North Carolina State University

Personalized deepfake video detection for celebrities

 

Mushfiqur Rahman and Dr. Chau-Wai Wong

AI Research


[Code] [Dataset] [Arxiv]

 

Abstract

Deepfake videos can imitate the visual appearance of any person, including celebrities and famous personalities. Today we observe many untestified videos of famous persons on internet. We aim to solve the problem of deepfake videos by using the domain knowledge about the data distribution of the famous person as well as the procedures that produce the deepfake videos.

 

 

Fig 1. Distribution of statistic for real and fake images.

 

 

Fig 2. Example of fake images generated by deep neural network.

 

 


Results

 

 

Fig 3. Separation of real and fake images

 

 

Celebdf id: 0
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.97
Celebdf id: 1
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.99
Celebdf id: 2
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.99
Celebdf id: 3
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.86
Celebdf id: 4
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.71
Celebdf id: 5
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.81
Celebdf id: 6
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.97
Celebdf id: 7
Test_v1_[0, 1], Test_v2_[0, 1] AUC= 0.92

 


Technical Paper

 


Demo Video

 


Talk Video

 


Supplimentary Material

 

See Supplimentary Material for detailed information of the network architecture and more experiments.

 


Citation